
Allen D. Malony
malony@cs.uoregon.edu

Department of Computer and Information Science
Computational Science Institute

University of Oregon

The TAU Performance System

The TAU Performance System DOE ACTS Workshop, September 20022

Overview

? Motivation
? Tuning and Analysis Utilities (TAU)

? Instrumentation
? Measurement
? Analysis
? Performance mapping

? Example
? PETSc

? Work in progress
? Conclusions

The TAU Performance System DOE ACTS Workshop, September 20023

Performance Needs ? Performance Technology

? Performance observability requirements
? Multiple levels of software and hardware
? Different types and detail of performance data
? Alternative performance problem solving methods
? Multiple targets of software and system application

? Performance technology requirements
? Broad scope of performance observation
? Flexible and configurable mechanisms
? Technology integration and extension
? Cross-platform portability
? Open, layered, and modular framework architecture

The TAU Performance System DOE ACTS Workshop, September 20024

Complexity Challenges for Performance Tools

? Computing system environment complexity
? Observation integration and optimization
? Access, accuracy, and granularity constraints
? Diverse/specialized observation capabilities/technology
? Restricted modes limit performance problem solving

? Sophisticated software development environments
? Programming paradigms and performance models
? Performance data mapping to software abstractions
? Uniformity of performance abstraction across platforms
? Rich observation capabilities and flexible configuration
? Common performance problem solving methods

The TAU Performance System DOE ACTS Workshop, September 20025

General Problems (Performance Technology)

How do we create robust and ubiquitous
performance technology for the analysis and tuning
of parallel and distributed software and systems in
the presence of (evolving) complexity challenges?

How do we apply performance technology effectively
for the variety and diversity of performance

problems that arise in the context of complex
parallel and distributed computer systems?

?

The TAU Performance System DOE ACTS Workshop, September 20026

Computation Model for Performance Technology

? How to address dual performance technology goals?
? Robust capabilities + widely available methodologies
? Contend with problems of system diversity
? Flexible tool composition/configuration/integration

? Approaches
? Restrict computation types / performance problems
?limited performance technology coverage

? Base technology on abstract computation model
?general architecture and software execution features
?map features/methods to existing complex system types
?develop capabilities that can adapt and be optimized

The TAU Performance System DOE ACTS Workshop, September 20027

General Complex System Computation Model

? Node: physically distinct shared memory machine
? Message passing node interconnection network

? Context: distinct virtual memory space within node
? Thread: execution threads (user/system) in context

memory memory

Node Node Node

VM
space

Context

SMP

Threads

node memory

…

…

Interconnection Network Inter-node message
communication

*

*

physical
view

model
view

The TAU Performance System DOE ACTS Workshop, September 20028

TAU Performance System Framework

? Tuning and Analysis Utilities
? Performance system framework for scalable parallel and

distributed high-performance computing
? Targets a general complex system computation model

? nodes / contexts / threads
? Multi-level: system / software / parallelism
? Measurement and analysis abstraction

? Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
? Portable performance profiling/tracing facility
? Open software approach

? University of Oregon, LANL, FZJ Germany

The TAU Performance System DOE ACTS Workshop, September 20029

TAU Performance System Architecture

EPILOG

Paraver

The TAU Performance System DOE ACTS Workshop, September 200210

Definitions – Instrumentation

? Instrumentation
? Insertion of extra code (hooks) into program
? Source instrumentation
?done by compiler, source-to-source translator, or manually
+ portable
+ links back to program code
– re-compile is necessary for (change in) instrumentation
– requires source to be available
– hard to use in standard way for mix-language programs
– source-to-source translators hard to develop (e.g., C++, F90)

? Object code instrumentation
?“re-writing” the executable to insert hooks

The TAU Performance System DOE ACTS Workshop, September 200211

Definitions – Instrumentation (continued)

? Dynamic code instrumentation
?a debugger-like instrumentation approach
?executable code instrumentation on running program
?DynInst and DPCL are examples
+/– opposite compared to source instrumentation

? Pre-instrumented library
?typically used for MPI and PVM program analysis
?supported by link-time library interposition
+ easy to use since only re-linking is necessary
– can only record information about library entities

The TAU Performance System DOE ACTS Workshop, September 200212

TAU Instrumentation

? Flexible instrumentation mechanisms at multiple levels
? Source code
?Manual
?automatic
? Program Database Toolkit (PDT)
?OpenMP directive rewriting (Opari)

? Object code
?pre-instrumented libraries (e.g., MPI using PMPI)
?statically linked and dynamically linked

? Executable code
?dynamic instrumentation (pre-execution) (DynInstAPI)
?Java virtual machine instrumentation using (JVMPI)

The TAU Performance System DOE ACTS Workshop, September 200213

TAU Instrumentation Approach

? Targets common measurement interface
? TAU API

? Object-based design and implementation
? Macro-based, using constructor/destructor techniques
? Program units: function, classes, templates, blocks
? Uniquely identify functions and templates
?name and type signature (name registration)
?static object creates performance entry
?dynamic object receives static object pointer
?runtime type identification for template instantiations

? C and Fortran instrumentation variants

? Instrumentation and measurement optimization

The TAU Performance System DOE ACTS Workshop, September 200214

Program Database Toolkit (PDT)

? Program code analysis framework
? develop source-based tools

? High-level interface to source code information
? Integrated toolkit for source code parsing, database

creation, and database query
? Commercial grade front end parsers
? Portable IL analyzer, database format, and access API
? Open software approach for tool development

? Multiple source languages
? Automated performance instrumentation tools

? TAU instrumentor

The TAU Performance System DOE ACTS Workshop, September 200215

PDT Architecture and Tools

Application
/ Library

C / C++
parser

Fortran 77/90
parser

C / C++
IL analyzer

Fortran 77/90
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90
interoperability

Automatic source
instrumentation

The TAU Performance System DOE ACTS Workshop, September 200216

PDT Components
? Language front end

? Edison Design Group (EDG): C, C++, Java
? Mutek Solutions Ltd.: F77, F90
? Creates an intermediate-language (IL) tree

? IL Analyzer
? Processes the intermediate language (IL) tree
? Creates “program database” (PDB) formatted file

? DUCTAPE (Bernd Mohr, FZJ/ZAM, Germany)
? C++ program Database Utilities and Conversion Tools

APplication Environment
? Processes and merges PDB files
? C++ library to access the PDB for PDT applications

The TAU Performance System DOE ACTS Workshop, September 200217

Definitions – Profiling

? Profiling
? Recording of summary information during execution
?execution time, # calls, hardware statistics, …

? Reflects performance behavior of program entities
?functions, loops, basic blocks
?user-defined “semantic” entities

? Very good for low-cost performance assessment
? Helps to expose performance bottlenecks and hotspots
? Implemented through
?sampling: periodic OS interrupts or hardware counter traps
?instrumentation: direct insertion of measurement code

The TAU Performance System DOE ACTS Workshop, September 200218

Definitions – Tracing

? Tracing
? Recording of information about significant points (events)

during program execution
?entering/exiting code regions (function, loop, block, …)
?thread/process interactions (e.g., send/receive messages)

? Save information in event record
?timestamp
?CPU identifier, thread identifier
?Event type and event-specific information

? Event trace is a time-sequenced stream of event records
? Can be used to reconstruct dynamic program behavior
? Typically requires code instrumentation

The TAU Performance System DOE ACTS Workshop, September 200219

TAU Measurement

? Performance information
? Performance events
? High-resolution timer library (real-time / virtual clocks)
? General software counter library (user-defined events)
? Hardware performance counters
?PCL (Performance Counter Library) (ZAM, Germany)
?PAPI (Performance API) (UTK, Ptools Consortium)
?consistent, portable API

? Organization
? Node, context, thread levels
? Profile groups for collective events (runtime selective)
? Performance data mapping between software levels

The TAU Performance System DOE ACTS Workshop, September 200220

TAU Measurement Options

? Parallel profiling
? Function-level, block-level, statement-level
? Supports user-defined events
? TAU parallel profile database
? Hardware counts values
? Multiple counters (new)
? Callpath profiling (new)

? Tracing
? All profile-level events
? Inter-process communication events
? Timestamp synchronization

? Configurable measurement library (user controlled)

The TAU Performance System DOE ACTS Workshop, September 200221

TAU Measurement System Configuration
? configure [OPTIONS]

? {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
? {-pthread, -sproc , -smarts} Use pthread, SGI sproc, smarts threads
? -openmp Use OpenMP threads
? -opari=<dir> Specify location of Opari OpenMP tool
? {-papi ,-pcl=<dir> Specify location of PAPI or PCL
? -pdt=<dir> Specify location of PDT
? {-mpiinc=<d>, mpilib=<d>}Specify MPI library instrumentation
? -TRACE Generate TAU event traces
? -PROFILE Generate TAU profiles
? -PROFILECALLPATH Generate Callpath profiles (1-level)
? -MULTIPLECOUNTERS Use more than one hardware counter
? -CPUTIME Use usertime+system time
? -PAPIWALLCLOCK Use PAPI to access wallclock time
? -PAPIVIRTUAL Use PAPI for virtual (user) time …

The TAU Performance System DOE ACTS Workshop, September 200222

TAU Measurement API
? Initialization and runtime configuration

? TAU_PROFILE_INIT(argc, argv);
TAU_PROFILE_SET_NODE(myNode);
TAU_PROFILE_SET_CONTEXT(myContext);
TAU_PROFILE_EXIT(message);

? Function and class methods
? TAU_PROFILE(name, type, group);

? Template
? TAU_TYPE_STRING(variable, type);

TAU_PROFILE(name, type, group);
CT(variable);

? User-defined timing
? TAU_PROFILE_TIMER(timer, name, type, group);

TAU_PROFILE_START(timer);
TAU_PROFILE_STOP(timer);

The TAU Performance System DOE ACTS Workshop, September 200223

TAU Measurement API (continued)
? User-defined events

? TAU_REGISTER_EVENT(variable, event_name);
TAU_EVENT(variable, value);
TAU_PROFILE_STMT(statement);

? Mapping
? TAU_MAPPING(statement, key);

TAU_MAPPING_OBJECT(funcIdVar);
TAU_MAPPING_LINK(funcIdVar, key);

? TAU_MAPPING_PROFILE (funcIdVar);
TAU_MAPPING_PROFILE_TIMER(timer, funcIdVar);
TAU_MAPPING_PROFILE_START(timer);
TAU_MAPPING_PROFILE_STOP(timer);

? Reporting
? TAU_REPORT_STATISTICS();

TAU_REPORT_THREAD_STATISTICS();

The TAU Performance System DOE ACTS Workshop, September 200224

TAU Analysis

? Profile analysis
? Pprof
?parallel profiler with text-based display

? Racy
?graphical interface to pprof (Tcl/Tk)

? jRacy
?Java implementation of Racy

? Trace analysis and visualization
? Trace merging and clock adjustment (if necessary)
? Trace format conversion (ALOG, SDDF, Vampir, Paraver)
? Vampir (Pallas) trace visualization

The TAU Performance System DOE ACTS Workshop, September 200225

Pprof Command
? pprof [-c|-b|-m|-t|-e|-i] [-r] [-s] [-n num] [-f file] [-l] [nodes]

? -c Sort according to number of calls
? -b Sort according to number of subroutines called
? -m Sort according to msecs (exclusive time total)
? -t Sort according to total msecs (inclusive time total)
? -e Sort according to exclusive time per call
? -i Sort according to inclusive time per call
? -v Sort according to standard deviation (exclusive usec)
? -r Reverse sorting order
? -s Print only summary profile information
? -n num Print only first number of functions
? -f file Specify full path and filename without node ids
? -l nodes List all functions and exit (prints only info about all

contexts/threads of given node numbers)

The TAU Performance System DOE ACTS Workshop, September 200226

Pprof Output (NAS Parallel Benchmark – LU)

? Intel Quad
PIII Xeon

? F90 +
MPICH

? Profile
- Node
- Context
- Thread

? Events
- code
- MPI

The TAU Performance System DOE ACTS Workshop, September 200227

jRacy (NAS Parallel Benchmark – LU)

n: node
c: context
t: thread

Global profiles

Individual profile

Routine
profile across
all nodes

The TAU Performance System DOE ACTS Workshop, September 200228

TAU + PAPI (NAS Parallel Benchmark – LU)

? Floating
point
operations

? Replaces
execution
time

? Only
requires
re-linking to
different
TAU library

The TAU Performance System DOE ACTS Workshop, September 200229

TAU + Vampir (NAS Parallel Benchmark – LU)

Timeline display

Communications
display

Parallelism display

Callgraph display

The TAU Performance System DOE ACTS Workshop, September 200230

TAU Performance System Status

? Computing platforms
? IBM SP / Power4, SGI Origin 2K/3K, Intel Teraflop,

Cray T3E / SV-1 (X-1 planned), Compaq SC, HP, Sun,
Hitachi SR8000, NEX SX-5 (SX-6 underway), Intel (x86,
IA-64) and Alpha Linux cluster, Apple, Windows

? Programming languages
? C, C++, Fortran 77, F90, HPF, Java, OpenMP, Python

? Communication libraries
? MPI, PVM, Nexus, Tulip, ACLMPL, MPIJava

? Thread libraries
? pthreads, Java,Windows, Tulip, SMARTS, OpenMP

The TAU Performance System DOE ACTS Workshop, September 200231

TAU Performance System Status (continued)

? Compilers
? KAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray,

IBM, Compaq
? Application libraries

? Blitz++, A++/P++, ACLVIS, PAWS, SAMRAI, Overture
? Application frameworks

? POOMA, POOMA-2, MC++, Conejo, Uintah, VTF, UPS
? Projects

? Aurora / SCALEA: ACPC, University of Vienna
? TAU full distribution (Version 2.1x, web download)

? Measurement library and profile analysis tools
? Automatic software installation and examples
? TAU User’s Guide

The TAU Performance System DOE ACTS Workshop, September 200232

PDT Status

? Program Database Toolkit (Version 2.1, web download)
? EDG C++ front end (Version 2.45.2)
? Mutek Fortran 90 front end (Version 2.4.1)
? C++ and Fortran 90 IL Analyzer
? DUCTAPE library
? Standard C++ system header files (KCC Version 4.0f)

? PDT-constructed tools
? TAU instrumentor (C/C++/F90)
? Program analysis support for SILOON and CHASM

? Platforms
? SGI, IBM, Compaq, SUN, HP, Linux (IA32/IA64),

Apple, Windows, Cray T3E, Hitachi

The TAU Performance System DOE ACTS Workshop, September 200233

Semantic Performance Mapping

? Associate
performance
measurements
with high-level
semantic
abstractions

? Need mapping
support in the
performance
measurement
system to assign
data correctly

The TAU Performance System DOE ACTS Workshop, September 200234

Semantic Entities/Attributes/Associations (SEAA)

? New dynamic mapping scheme (S. Shende, Ph.D. thesis)
? Contrast with ParaMap (Miller and Irvin)
? Entities defined at any level of abstraction
? Attribute entity with semantic information
? Entity-to-entity associations

? Two association types (implemented in TAU API)
? Embedded – extends associated

object to store performance
measurement entity

? External – creates an external look-up
table using address of object as key to
locate performance measurement entity

…

The TAU Performance System DOE ACTS Workshop, September 200235

Hypothetical Mapping Example
? Particles distributed on surfaces of a cube
Particle* P[MAX]; /* Array of particles */
int GenerateParticles() {
/* distribute particles over all faces of the cube */
for (int face=0, last=0; face < 6; face++){
/* particles on this face */
int particles_on_this_face = num(face);
for (int i=last; i < particles_on_this_face; i++) {
/* particle properties are a function of face */
P[i] = ... f(face);
...

}
last+= particles_on_this_face;

}
}

The TAU Performance System DOE ACTS Workshop, September 200236

Hypothetical Mapping Example (continued)

? How much time is spent processing face i particles?
? What is the distribution of performance among faces?

int ProcessParticle(Particle *p) {
/* perform some computation on p */

}
int main() {
GenerateParticles();
/* create a list of particles */
for (int i = 0; i < N; i++)
/* iterates over the list */
ProcessParticle(P[i]);

}

…

engine

work
packets

The TAU Performance System DOE ACTS Workshop, September 200237

No Performance Mapping versus Mapping

? Typical performance
tools report performance
with respect to routines

? Does not provide support
for mapping

? Performance tools with
SEAA mapping can
observe performance with
respect to scientist’s
programming and
problem abstractions

TAU (no mapping) TAU (w/ mapping)

Strategies for Empirical Performance Evaluation

? Empirical performance evaluation as a series of
performance experiments
? Experiment trials describing instrumentation and

measurement requirements
? Where/When/How axes of empirical performance space
?where are performance measurements made in program
?when is performance instrumentation done
?how are performance measurement/instrumentation chosen

? Strategies for achieving flexibility and portability goals
? Limited performance methods restrict evaluation scope
? Non-portable methods force use of different techniques
? Integration and combination of strategies

The TAU Performance System DOE ACTS Workshop, September 200239

PETSc (ANL)

? Portable, Extensible Toolkit for Scientific Computation
? Scalable (parallel) PDE framework

? Suite of data structures and routines
? Solution of scientific applications modeled by PDEs

? Parallel implementation
? MPI used for inter-process communication

? TAU instrumentation
? PDT for C/C++ source instrumentation
? MPI wrapper library layer instrumentation

? Example
? Solves a set of linear equations (Ax=b) in parallel (SLES)

The TAU Performance System DOE ACTS Workshop, September 200240

PETSc Linear Equation Solver Profile

The TAU Performance System DOE ACTS Workshop, September 200241

PETSc Linear Equation Solver Profile

The TAU Performance System DOE ACTS Workshop, September 200242

PETSc Linear Equation Solver Profile

The TAU Performance System DOE ACTS Workshop, September 200243

PETSc Trace Summary Profile

The TAU Performance System DOE ACTS Workshop, September 200244

PETSc Performance Trace

The TAU Performance System DOE ACTS Workshop, September 200245

Work in Progress

? Trace visualization
? TAU will generate event-traces with PAPI performance

data. Vampir (v3.0) will support visualization of this data
? Runtime performance monitoring and analysis

? Online performance data access
?incremental profile sampling

? Performance analysis and visualization in SCIRun
? Performance Database Framework

? XML parallel profile representation
?TAU profile translation

? PostgresSQL performance database
? Statement-level automatic performance instrumentation

The TAU Performance System DOE ACTS Workshop, September 200246

Concluding Remarks

? Complex software and parallel computing systems pose
challenging performance analysis problems that require
robust methodologies and tools

? To build more sophisticated performance tools, existing
proven performance technology must be utilized

? Performance tools must be integrated with software and
systems models and technology
? Performance engineered software
? Function consistently and coherently in software and

system environments

? PAPI and TAU performance systems offer robust
performance technology that can be broadly integrated

The TAU Performance System DOE ACTS Workshop, September 200247

Acknowledgements

? Department of Energy (DOE)
? MICS office
?DOE 2000 ACTS contract
?“Performance Technology for Tera-class Parallel Computer

Systems: Evolution of the TAU Performance System”
? University of Utah DOE ASCI Level 1 sub-contract
? DOE ASCI Level 3 (LANL, LLNL)
? DARPA
? NSF National Young Investigator (NYI) award

? Research Centre Juelich
? John von Neumann Institute for Computing
? Dr. Bernd Mohr

? Los Alamos National Laboratory

The TAU Performance System DOE ACTS Workshop, September 200248

Information

? TAU (http://www.acl.lanl.gov/tau)
? PDT (http://www.acl.lanl.gov/pdtoolkit)
? PAPI (http://icl.cs.utk.edu/projects/papi/)
? OPARI (http://www.fz-juelich.de/zam/kojak/)

